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Codes

Alphabet Aq with q ∈ N characters,

Words: concatenations of characters, preferably of a fixed
length n ∈ N

Code C: collection of M ∈ N words

If C is a q-ary code of length n (i.e. all words have length
n), then M ≤ qn.

Hamming distance between two codewords: number of
positions in which the two words differ.
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Coding/Decoding

Let C be a code of length n.

Minimum distance of C, d(C),

determines the number of transmission errors that can be
detected/corrected.

Fundamental problem of coding theory: construct codes with
“optimized parameters”.
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Linear codes

The alphabet Aq is the set of elements of a finite field Fq of
order q, q = ph, p prime, h ≥ 1.

A linear q-ary code of length n is a sub vector space of Fn
q.

For a linear code C, its minimum distance equals its
minimum weight.

Jan De Beule Segre – MDS codes
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The Singleton bound

Theorem (Singleton bound)

Let C be a q-ary (n,M,d). Then M ≤ qn−d+1.

Corollary

Let C be a linear [n, k ,d ]-code. Then k ≤ n − d + 1.

Definition

A linear [n, k ,d ] code C over Fq is an MDS code if it satisfies
k = n − d + 1.

Is there an upper bound on d (for fixed k and q)?

Jan De Beule Segre – MDS codes
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Special sets of vectors

Definition

Let C be an [n, k ,d ] code. An k × n matrix is a generator matrix
for C if and only if C is the row space of G.

Lemma

An k × n matrix is a generator matrix of an MDS code if and
only if every subset of k columns of G is linearly independent.

Corollary

An MDS code of dimension k and length n is equivalent with a
set S of n vectors of Fk

q with the property that every k vectors of
S form a basis of Fk

q.

Jan De Beule Segre – MDS codes
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Definition – Examples

Definition

An arc of a vector space F
k
q is a set S of vectors with the

property that every k vectors of S form a basis of Fk
q.

1 Let {e1, . . . ,ek} be a basis of Fk
q. Then

{e1, . . . ,ek ,e1 + e2 + · · ·+ ek} is an arc of size k + 1.
2 Let

S = {(1, t , t2, . . . , tk−1)‖t ∈ Fq} ∪ {(0,0, . . . ,0,1)} ⊂ F
k
q.

Then S is an arc of size q + 1.

Jan De Beule Segre – MDS codes
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Bound on the size of arcs (case 1)

When k ≥ q + 1, example (1) is better than (2).

Theorem (Bush 1952)

Let S be an arc of size n of Fk
q, k ≥ q + 1. Then n ≤ k + 1 and

if n = q + 1, then S is equivalent to example (1)

Jan De Beule Segre – MDS codes
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The MDS conjecture

Conjecture

Let k ≥ q. For an arc of size n in F
k
q, n ≤ q + 1 unless k = 3 or

k = q − 1 and q is even, in which case n ≤ q + 1.

Jan De Beule Segre – MDS codes
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Questions of Segre (1955)

(i) Given m,q, what is the maximal value of l for which an
l-arc exists?

(ii) For which values of k − 1,q, q > k , is each (q + 1)-arc in
PG(k − 1,q) a normal rational curve?

(iii) For a given k − 1,q, q > k , which arcs of PG(k − 1,q) are
extendable to a (q + 1)-arc?

Jan De Beule Segre – MDS codes



university-logo

Context
Arcs of vector spaces

Polynomials
Lemma of tangents

The upper bound

Questions of Segre (1955)

(i) Given m,q, what is the maximal value of l for which an
l-arc exists?

(ii) For which values of k − 1,q, q > k , is each (q + 1)-arc in
PG(k − 1,q) a normal rational curve?

(iii) For a given k − 1,q, q > k , which arcs of PG(k − 1,q) are
extendable to a (q + 1)-arc?

Jan De Beule Segre – MDS codes



university-logo

Context
Arcs of vector spaces

Polynomials
Lemma of tangents

The upper bound

Questions of Segre (1955)

(i) Given m,q, what is the maximal value of l for which an
l-arc exists?

(ii) For which values of k − 1,q, q > k , is each (q + 1)-arc in
PG(k − 1,q) a normal rational curve?

(iii) For a given k − 1,q, q > k , which arcs of PG(k − 1,q) are
extendable to a (q + 1)-arc?

Jan De Beule Segre – MDS codes



university-logo

Context
Arcs of vector spaces

Polynomials
Lemma of tangents

The upper bound

Observations

Lemma

Let S be an arc of size n of Fk
q. Let Y ⊂ S be of size k − 2.

There are exactly t = q + k − 1 − n hyperplanes of Fk
q with the

property that H ∩ S = Y .

Corollary

An arc of F3
q has size at most q + 2.

Theorem (Segre)

An arc of F3
q, q odd, has size at most q + 1, in case of equality,

it is equivalent with example (2).

Jan De Beule Segre – MDS codes
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Interpolation

Lemma

For a subset E ⊂ Fq of size t + 1 and f ∈ Fq[X ], a polynomial of
degree t,

f (X ) =
∑

e∈E

f (e)
∏

y∈E\{e}

X − y
e − y

Jan De Beule Segre – MDS codes
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Interpolation

Lemma

For a subset E ⊂ F
2
q of size t + 1 with the property that

(u1,u2), (y1, y2) ∈ E implies u2 6= 0, y2 6= 0 and u1
u2

6= y1
y2

and
f ∈ Fq[X1,X2], a homogenous polynomial of degree t,

f (X1,X2) =
∑

(e1,e2)∈E

f (e1,e2)
∏

(y1,y2)∈E\{(e1 ,e2)}

y2X1 − y1X2

e1y2 − y1e2
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Interpolation

Corollary

For a subset E ⊂ F
2
q of size t + 2 with the property that

(u1,u2), (y1, y2) ∈ E implies u2 6= 0, y2 6= 0 and u1
u2

6= y1
y2

and
f ∈ Fq[X1,X2], a homogenous polynomial of degree t,

∑

(x1,x2)∈E

f (x1, x2)
∏

y1,y2∈E\{(x1 ,x2)}

(x1y2 − y1x2)
−1 = 0
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Tangent functions

Let S be an arc of size n of Fk
q.

Choose a set A ⊂ S of size k − 2.
Then there are t = q + k − 1 − n tangent hyperplanes on A
to S.
Let f i

A be t linear forms on F
k
q such that ker(f i

A) are these t
tangent hyperplanes

Definition

For a subset A ⊂ S of size k − 2, define its tangent function as

FA(x) :=
t∏

i=1

f i
A(x)

Jan De Beule Segre – MDS codes
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Interpolation of tangent functions

Lemma

Let S be an arc of Fk
q. Let A ⊂ S be a subset of size k − 2.

Then for every subset E ⊂ S \ A of size t + 2,

∑

x∈E

FA(x)
∏

y∈E\{x}

det(x , y ,A)−1 = 0

Jan De Beule Segre – MDS codes
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Generalization

Lemma (S. Ball, [1])

Let S be an arc of Fk
q. For a subset D ⊂ S of size k − 3 and

{x , y , z} ⊂ S \ D,

FD∪{x}(y)FD∪{y}(z)FD∪{z}(x) =

(−1)t+1FD∪{x}(z)FD∪{y}(x)FD∪{z}(y)

Jan De Beule Segre – MDS codes
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Using the generalization

Lemma

Let S be an arc of Fk
q. For a subset D ⊂ S of size k − 4 and

{x1, x2, x3, z1, z2} ⊂ S \ D, switching x1 and x2, or switching x2

and x3, or switching z1 and z2 in

FD∪{z1,z2}(x1)FD∪{z2,x1}(x2)FD∪{x1,x2}(x3)

FD∪{z2,x1}(z1)FD∪{x1,x2}(z2)

changes the sign by (−1)t+1.

Jan De Beule Segre – MDS codes
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The Segre product

Let r ∈ {1, . . . , k − 2}.

Let D ⊂ S of size k − 2 − r and let A = {x1, . . . , xr+1} and
B = {z1, . . . , zr} be disjoint.

Definition

PD(A,B) :=

FD∪{zr ,...,z1}
(x1)FD∪{zr ,...,z2,x1}

(x2) · · · FD∪{zr ,xr−1...,x1}
(xr )FD∪{xr ,...,x1}

(xr+1)

FD∪{zr ,...,z2,x1}
(z1) · · · FD∪{zr ,xr−1...,x1}

(zr−1)

Jan De Beule Segre – MDS codes
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Exploiting the lemma of tangents

Lemma

Let D ⊂ S be of size k − 2 − r and let A = {x1, . . . , xr+1} or
A = {x1, . . . , xr} and B = {z1, . . . , zr} be disjoint subsets of
S \ D. Switching the order in A (or B) by a transposition
changes the sign of PD(A,B) by (−1)t+1.

Jan De Beule Segre – MDS codes



university-logo

Context
Arcs of vector spaces

Polynomials
Lemma of tangents

The upper bound

One more notation

For any subset B of an ordered set L, let σ(B,L) be (t + 1)
times the number of transpositions needed to order L so that
the elements of B are the last |B| elements.

Jan De Beule Segre – MDS codes
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Exploiting the Segre product

Lemma

Let A of size n, L of size r , D of size k − 1 − r and Ω of size
t + 1 − n be pairwise disjoint subsequences of S. If
n ≤ r ≤ n + p − 1 and r ≤ t + 2, where q = ph, then

∑

B⊆L
|B|=n

(−1)σ(B,L)PD∪(L\B)(A,B)
∏

z∈Ω∪B

det(z,A,L \ B,D)−1 =

(−1)(r−n)(nt+n+1)
∑

∆⊆Ω
|∆|=r−n

PD(A∪∆,L)
∏

z∈(Ω\∆)∪L

det(z,A,∆,D)−1
.

Jan De Beule Segre – MDS codes
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Theorem (S. Ball, [1])

If k ≤ p then |S| ≤ q + 1.

Proof.
We may assume k + t ≤ q + 2.

Apply previous lemma with with r = t + 2 = k − 1 and
n = 0 and get ∏

z∈Ω

det(z,L)−1 = 0,

which is a contradiction.

Jan De Beule Segre – MDS codes
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A generalization

Theorem (S. Ball and JDB, [2])

If q is non-prime and k ≤ 2p − 2, then |S| ≤ q + 1.

Jan De Beule Segre – MDS codes
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